This problem deals with integrals and stuff. I'm not sure what to do with the temperatures.
Here's the problem:
A cup of coffee at 100 degrees celsius is put into a 15 degree celsius room when t = 0. The coffee's temperature, f(t), is changing at a rate given by f′(t) = −5(0.7)^t degrees celsius per minute, where t is in minutes.
Estimate the coffee's temperature when t=11: ________
Any legitimate attempt will be repped, and if you could explain your process, that'd be great.
Here's the problem:
A cup of coffee at 100 degrees celsius is put into a 15 degree celsius room when t = 0. The coffee's temperature, f(t), is changing at a rate given by f′(t) = −5(0.7)^t degrees celsius per minute, where t is in minutes.
Estimate the coffee's temperature when t=11: ________
Any legitimate attempt will be repped, and if you could explain your process, that'd be great.